X
تبلیغات
رایتل

فایل فردا

مرجع دانلود فایل های دانشجویی

دانلود ترجمه مقاله یادگیری مشخصه ­ی عابر پیاده براساس CNN چند برچسبی برای بیومتریک نرم

Multilabel CNN Based Pedestrian Attribute Learning for
دسته بندی کامپیوتر
بازدید ها 35
فرمت فایل doc
حجم فایل 4210 کیلو بایت
تعداد صفحات فایل 18
دانلود ترجمه مقاله یادگیری مشخصه ­ی عابر پیاده براساس CNN چند برچسبی برای بیومتریک نرم

فروشنده فایل

کد کاربری 1055
کاربر

IEEE-ICB 2015


Multi-label CNN Based Pedestrian Attribute Learning for Soft Biometrics

Abstract
Recently, pedestrian attributes like gender, age and
clothing etc., have been used as soft biometric traits for recognizing
people. Unlike existing methods that assume the
independence of attributes during their prediction, we propose
a multi-label convolutional neural network (MLCNN)
to predict multiple attributes together in a unified framework.
Firstly, a pedestrian image is roughly divided into
multiple overlapping body parts, which are simultaneously
integrated in the multi-label convolutional neural network.
Secondly, these parts are filtered independently and aggregated
in the cost layer. The cost function is a combination
of multiple binary attribute classification cost functions.
Moreover, we propose an attribute assisted person reidentification
method, which fuses attribute distances and
low-level feature distances between pairs of person images
to improve person re-identification performance. Extensive
experiments show: 1) the average attribute classification
accuracy of the proposed method is 5.2% and 9.3% higher
than the SVM-based method on three public databases,
VIPeR and GRID, respectively; 2) the proposed attribute assisted
person re-identification method is superior to existing
approaches.

یادگیری مشخصه ­ی عابر پیاده براساس CNN چند برچسبی برای بیومتریک نرم

چکیده

به تازگی، ویژگی­های عابر پیاده مثل جنس، سن و لباس و غیره، به­عنوان صفات بیومتریک نرم برای شناختن افراد استفاده شده­اند. برخلاف روش­های موجود که استقلال ویژگی­ها را در طول پیش­بینی آ­ن­ها در نظر می­گیرد، یک شبکه­ی عصبی پیچیده چند برچسبی (MLCNN) را به منظور پیش­بینی مشخصات متعدد همراه با هم در چارچوب یکپارچه ارائه می­کنیم. ابتدا، تصویر عابر پیاده تقریبا به چند بخش­ همپوشانی­کننده­ی بدن تقسیم می­شود، که بطور همزمان در شبکه عصبی پیچیده­ی چند برچسبی ادغام می­­شوند. در مرحله­ی دوم، این بخش­­ها بطور مستقل در لایه­ی هزینه فیلتر و طبقه­بندی می­شوند. تابع هزینه ترکیبی از چند تابع هزینه­ی طبقه­بندی ویژگی دودویی است. علاوه بر این، روش باز شناسایی شخص به کمک ویژگی را ارائه می­کنیم، که فواصل ویژگی و فواصل ویژگی سطح پایین را بین جفت تصاویر فرد به منظور بهبود عملکرد بازشناسایی فرد ترکیب می­کند. آزمایش­های گسترده نشان می­دهند: 1) میانگین دقت طبقه­بندی ویژگی روش ارائه شده به ترتیب 5.2% و 9.3% بیشتر از روش مبتنی بر SVM در سه پایگاه داده عمومی، VIPeR و GRID است، 2) روش پیشنهادی بازشناسایی فرد به کمک ویژگی نسبت به روش­های دیگر برتری دارد.

یادگیری مشخصه­ی عابر پیاده براساس CNN چند برچسبی برای بیومتریک نرم

چکیده

به تازگی، ویژگی­های عابر پیاده مثل جنس، سن و لباس و غیره، به­عنوان صفات بیومتریک نرم برای شناختن افراد استفاده شده­اند. برخلاف روش­های موجود که استقلال ویژگی­ها را در طول پیش­بینی آ­ن­ها در نظر می­گیرد، یک شبکه­ی عصبی پیچیده چند برچسبی (MLCNN ) را به منظور پیش­بینی مشخصات متعدد همراه با هم در چارچوب یکپارچه ارائه می­کنیم. ابتدا، تصویر عابر پیاده تقریبا به چند بخش­ همپوشانی­کننده­ی بدن تقسیم می­شود، که بطور همزمان در شبکه عصبی پیچیده­ی چند برچسبی ادغام می­­شوند. در مرحله­ی دوم، این بخش­­ها بطور مستقل در لایه­ی هزینه فیلتر و طبقه­بندی می­شوند. تابع هزینه ترکیبی از چند تابع هزینه­ی طبقه­بندی ویژگی دودویی است. علاوه بر این، روش باز شناسایی شخص به کمک ویژگی را ارائه می­کنیم، که فواصل ویژگی و فواصل ویژگی سطح پایین را بین جفت تصاویر فرد به منظور بهبود عملکرد بازشناسایی فرد ترکیب می­کند. آزمایش­های گسترده نشان می­دهند: 1) میانگین دقت طبقه­بندی ویژگی روش ارائه شده به ترتیب 5.2% و 9.3% بیشتر از روش مبتنی بر SVM در سه پایگاه داده عمومی، VIPeR و GRID است، 2) روش پیشنهادی بازشناسایی فرد به کمک ویژگی نسبت به روش­های دیگر برتری دارد.


تاریخ ارسال: یکشنبه 22 اسفند 1395 ساعت 21:11 | نویسنده: احمدرضا ملاحسینی | چاپ مطلب
نظرات (0)
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
نام :
پست الکترونیک :
وب/وبلاگ :
ایمیل شما بعد از ثبت نمایش داده نخواهد شد